k – Nearest Neighbor rule

- Exemplar characterised by a set of features;
- decide class to which exemplar belongs
What is Lazy Learning

- Compare ANNs and CBR or k-NN classifier
 - Artificial Neural Networks are *eager* learners
 - training examples compiled into a model at training time
 - not available at runtime
 - CBR or k-Nearest Neighbour are *lazy*
 - little offline learning done
 - work deferred to runtime
Distance/Similarity Function

- For query q and training set X (described by features F)
- compute $d(x,q)$ for each x in X, where $d(x,q)$ is a function calculating the similarity or distance between x and q
- Category of q decided by its k Nearest Neighbours
Requirements of a distance function

• Most employed functions are the so called metrics or distance function

• Any distance function must satisfy the following requirements:
 • - no negativity: \(f(x,y) \geq 0 \)
 • - reflexitivity: \(f(c,y) = f(y,x) \)
 • - triangular unequality:

 \[f(x,y) \leq f(x,z) + f(z,y) \]
Dimension reduction in k-NN

- Feature selection
- Not all features required
- Noisy features a hindrance
- Condensed NN
- Some examples redundant
- Retrieval time depends on number of examples
Condensed NN

- D set of training samples
- Find E where $E \subset D$; NN rule used with E
- should be as good as with D
- choose $x \in D$ randomly,
- $D \leftarrow D \setminus \{x\}$, $E \leftarrow \{x\}$,
- DO
 - learning? \leftarrow FALSE,
 - FOR EACH $x \in D$
 - classify x by NN using E,
 - if classification incorrect
 - then $E \leftarrow E \cup \{x\}$,
 - $D \leftarrow D \setminus \{x\}$,
 - learning \leftarrow TRUE,
- WHILE (learning? \neq FALSE)
Improving Condensed NN

• Sort data based on distance to nearest unlike neighbour
• Different outcomes depending on data order
 • that’s a bad thing in an algorithm
• identify exemplars near decision surface
Condensing illustration: resulting samples
Feature selection is NP

- $2n$ possible feature combinations
- powerset of all features
- two evaluation strategies
 - filtering
 - wraper
Filtering: Evaluation function

- Score *predictiveness* of features, e.g.
 - eigenvalues of covariance matrix of features
 - information theoretic analysis
 - all features appearing in a decision tree
 - some other statistical tests
 - Learning bias of evaluation different to that of classifier
 - classifier is best evaluation function
Feature Weighting

• Use *introspective* learning
• – Test training data on itself
• • For a *correct* retrieval
• – *increase* weight of matching features
• – *decrease* weight of un-matching features
Editing illustration: samples and decision boundary
Editing illustration:
Edited training sample
Basic editing procedure

• Given a training sample R (of known classification), let S be the set of samples misclassified by the classification 1-NN rule.

• Remove these from the training sample to form $R = R - S$ and repeat the procedure until a stopping criterion is met.

• Thus, we end up with a set of samples correctly classified by the 1-NN rule.
Computer time saving

• Development of data structures and non-exhaustive search algorithms
• Friedman algorithm:
• Preprocessing:
• samples are ordered according to their value in one of the features. It is recommended to use that feature with the greatest variability
Computer time saving (cont)

• Friedman algorithm
• Search (for the nearest neighbor of a new pattern X, in the training sample).
 • --samples in the training sample are examined according to their projected distances to X, in the chosen feature
 • --When this projected distance gets a value greater than the full distance from X to its current nearest neighbor no more samples are examined.